はじめに
離散時間信号をアンダー・サンプリングした結果のDTFTと元の離散時間信号のDTFTの関係を明らかにし、エイリアシングが生じない条件を導く。
本記事の内容は下記の資料にも記した。
Release v0.11.1 · motchy869/Signal-Processing-Memorandum (github.com)
「アンダー・サンプリングされた信号のDTFT」
  \[
    % general purpose
    \newcommand{\ctext}[1]{\raise0.2ex\hbox{\textcircled{\scriptsize{#1}}}}
    % mathematics
      % general purpose
      \DeclarePairedDelimiterX{\parens}[1]{\lparen}{\rparen}{#1}
      \DeclarePairedDelimiterX{\braces}[1]{\lbrace}{\rbrace}{#1}
      \DeclarePairedDelimiterX{\bracks}[1]{\lbrack}{\rbrack}{#1}
      \DeclarePairedDelimiterX{\verts}[1]{|}{|}{#1}
      \DeclarePairedDelimiterX{\Verts}[1]{\|}{\|}{#1}
      \newcommand{\as}{{\quad\textrm{as}\quad}}
      \newcommand{\st}{{\textrm{ s.t. }}}
      \DeclarePairedDelimiterX{\setComprehension}[2]{\lbrace}{\rbrace}{#1\,\delimsize\vert\,#2}
      \newcommand{\naturalNumbers}{\mathbb{N}}
      \newcommand{\integers}{\mathbb{Z}}
      \newcommand{\rationalNumbers}{\mathbb{Q}}
      \newcommand{\realNumbers}{\mathbb{R}}
      \newcommand{\complexNumbers}{\mathbb{C}}
      \newcommand{\field}{\mathbb{F}}
      \newcommand{\func}[2]{{#1}\parens*{#2}}
      \newcommand*{\argmax}{\operatorname*{arg~max}}
      \newcommand*{\argmin}{\operatorname*{arg~min}}
      % set theory
      \newcommand{\range}[2]{\braces*{#1,\dotsc,#2}}
      \providecommand{\complement}{}\renewcommand{\complement}{\mathrm{c}}
      \newcommand{\ind}[2]{\mathbbm{1}_{#1}\parens*{#2}}
      \newcommand{\indII}[1]{\mathbbm{1}\braces*{#1}}
      % number theory
      \newcommand{\abs}[1]{\verts*{#1}}
      \newcommand{\combi}[2]{{_{#1}\mathrm{C}_{#2}}}
      \newcommand{\perm}[2]{{_{#1}\mathrm{P}_{#2}}}
      \newcommand{\GaloisField}[1]{\mathrm{GF}\parens*{#1}}
      % real analysis
      \newcommand{\NapierE}{\mathrm{e}}
      \newcommand{\sgn}[1]{\operatorname{sgn}\parens*{#1}}
      \newcommand*{\rect}{\operatorname{rect}}
      \newcommand{\cl}[1]{\operatorname{cl}#1}
      \newcommand{\Img}[1]{\operatorname{Img}\parens*{#1}}
      \newcommand{\dom}[1]{\operatorname{dom}\parens*{#1}}
      \newcommand{\norm}[1]{\Verts*{#1}}
      \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
      \newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
      \newcommand{\expo}[1]{\exp\parens*{#1}}
      \newcommand{\sinc}{\operatorname{sinc}}
      \newcommand{\nsinc}{\operatorname{nsinc}}
      \newcommand{\GammaFunc}[1]{\Gamma\parens*{#1}}
      \newcommand*{\erf}{\operatorname{erf}}
          % inverse trigonometric functions
          \newcommand{\asin}[1]{\operatorname{Sin}^{-1}{#1}}
          \newcommand{\acos}[1]{\operatorname{Cos}^{-1}{#1}}
          \newcommand{\atan}[1]{\operatorname{{Tan}^{-1}}{#1}}
          \newcommand{\atanEx}[2]{\atan{\parens*{#1,#2}}}
          % convolution
          \newcommand{\cycConv}[2]{{#1}\underset{\text{cyc}}{*}{#2}}
          % derivative
          \newcommand{\deriv}[3]{\frac{\operatorname{d}^{#3}#1}{\operatorname{d}{#2}^{#3}}}
          \newcommand{\derivLong}[3]{\frac{\operatorname{d}^{#3}}{\operatorname{d}{#2}^{#3}}#1}
          \newcommand{\partDeriv}[3]{\frac{\operatorname{\partial}^{#3}#1}{\operatorname{\partial}{#2}^{#3}}}
          \newcommand{\partDerivLong}[3]{\frac{\operatorname{\partial}^{#3}}{\operatorname{\partial}{#2}^{#3}}#1}
          \newcommand{\partDerivIIHetero}[3]{\frac{\operatorname{\partial}^2#1}{\partial#2\operatorname{\partial}#3}}
          \newcommand{\partDerivIIHeteroLong}[3]{{\frac{\operatorname{\partial}^2}{\partial#2\operatorname{\partial}#3}#1}}
          % integral
          \newcommand{\integrate}[5]{\int_{#1}^{#2}{#3}{\mathrm{d}^{#4}}#5}
          \newcommand{\LebInteg}[4]{\int_{#1} {#2} {#3}\parens*{\mathrm{d}#4}}
      % complex analysis
      \newcommand{\conj}[1]{\overline{#1}}
      \providecommand{\Re}{}\renewcommand{\Re}[1]{{\operatorname{Re}{\parens*{#1}}}}
      \providecommand{\Im}{}\renewcommand{\Im}[1]{{\operatorname{Im}{\parens*{#1}}}}
      \newcommand{\Arg}{\operatorname{Arg}}
      \newcommand{\Log}{\operatorname{Log}}
          % Laplace transform
          \newcommand{\LPLC}[1]{\operatorname{\mathcal{L}}\parens*{#1}}
          \newcommand{\ILPLC}[1]{\operatorname{\mathcal{L}}^{-1}\parens*{#1}}
          % Discrete Fourier Transform
          \newcommand{\DFT}[1]{\mathrm{DFT}\parens*{#1}}
          % Z transform
          \newcommand{\ZTrans}[1]{\operatorname{\mathcal{Z}}\parens*{#1}}
          \newcommand{\IZTrans}[1]{\operatorname{\mathcal{Z}}^{-1}\parens*{#1}}
      % linear algebra
      \newcommand{\bm}[1]{{\boldsymbol{#1}}}
      \newcommand{\matEntry}[3]{#1\bracks*{#2}\bracks*{#3}}
      \newcommand{\matPart}[5]{\matEntry{#1}{#2:#3}{#4:#5}}
      \newcommand{\diag}[1]{\operatorname{diag}\parens*{#1}}
      \newcommand{\tr}[1]{\operatorname{tr}{\parens*{#1}}}
      \newcommand{\inprod}[2]{\left\langle#1,#2\right\rangle}
      \newcommand{\HadamardProd}{\odot}
      \newcommand{\HadamardDiv}{\oslash}
      \newcommand{\Span}[1]{\operatorname{span}\bracks*{#1}}
      \newcommand{\Ker}[1]{\operatorname{Ker}\parens*{#1}}
      \newcommand{\rank}[1]{\operatorname{rank}\parens*{#1}}
        % vector
        % unit vector
        \newcommand{\vix}{\bm{i}_x}
        \newcommand{\viy}{\bm{i}_y}
        \newcommand{\viz}{\bm{i}_z}
      % graph theory
      \newcommand{\neighborhood}{\mathcal{N}}
    % probability theory
    \newcommand{\PDF}[2]{\operatorname{PDF}\bracks*{#1,\;#2}}
    \newcommand{\Ber}[1]{\operatorname{Ber}\parens*{#1}}
    \newcommand{\Beta}[2]{\operatorname{Beta}\parens*{#1,#2}}
    \newcommand{\ExpDist}[1]{\operatorname{ExpDist}\parens*{#1}}
    \newcommand{\ErlangDist}[2]{\operatorname{ErlangDist}\parens*{#1,#2}}
    \newcommand{\PoissonDist}[1]{\operatorname{PoissonDist}\parens*{#1}}
    \newcommand{\GammaDist}[2]{\operatorname{Gamma}\parens*{#1,#2}}
    \newcommand{\cind}[2]{\ind{#1\left| #2\right.}}	% conditional indicator function
    \providecommand{\Pr}{}\renewcommand{\Pr}[1]{\operatorname{Pr}\parens*{#1}}
    \DeclarePairedDelimiterX{\cPrParens}[2]{(}{)}{#1\,\delimsize\vert\,#2}
    \newcommand{\cPr}[2]{\operatorname{Pr}\cPrParens{#1}{#2}}
    \newcommand{\E}[2]{\operatorname{E}_{#1}\bracks*{#2}}
    \newcommand{\cE}[3]{\E{#1}{\left.#2\right|#3}}
    \newcommand{\Var}[2]{\operatorname{Var}_{#1}\bracks*{#2}}
    \newcommand{\Cov}[2]{\operatorname{Cov}\bracks*{#1,#2}}
    \newcommand{\CovMat}[1]{\operatorname{Cov}\bracks*{#1}}
    % signal processing
      % Discrete Time Fourier Transform
      \newcommand{\DTFT}[1]{\mathrm{DTFT}\parens*{#1}}
      \newcommand{\IDTFT}[1]{\mathrm{IDTFT}\parens*{#1}}
    % computer science
      % programming
      \newcommand{\plpl}{\mathrel{++}}
      \newcommand{\pleq}{\mathrel{+}=}
      \newcommand{\asteq}{\mathrel{*}=}
    \]
  \[
    \newcommand{\Ts}{T_\text{s}}
    \newcommand{\xd}{x_\text{d}}
    \newcommand{\yd}{y_\text{d}}
    \newcommand{\Xd}{X_\text{d}}
    \newcommand{\Yd}{Y_\text{d}}
    \newcommand{\DTFT}[1]{\mathrm{DTFT}\parens*{#1}}
    \newcommand{\DTFTwithArg}[2]{\DTFT{#1}\parens*{#2}}
    \newcommand{\IDTFT}[1]{\mathrm{IDTFT}\parens*{#1}}
    \newcommand{\IDTFTwithArg}[2]{\IDTFT{#1}\parens*{#2}}
  \]
主張
記号を次のように定義する。
- $R\in\naturalNumbers,\;R\geq 2$ : アンダー・サンプリング・レート
- $\xd:\integers\to\complexNumbers$ : 離散時間信号
- $\Ts>0$ : $\xd$ のサンプル周期
- $\yd$ : $\xd$ を $1/R$ にアンダー・サンプリングした離散時間信号。つまり $\yd(n) = \xd(nR)$ 。
- $\Xd$ : $\xd$ のDTFT
- $\Yd$ : $\yd$ のDTFT
このとき $Y$ は次式で表される。
\[ \Yd(\omega) = \frac{1}{R}\sum_{n=0}^{R-1} \Xd\parens*{\omega-n\frac{2\pi}{R\Ts}} \]
$\Yd$ は $\omega$ に関する $2\pi/(R\Ts)$ 周期関数となり、$\Yd$ の第1 Nyquist 領域は $S_{\text{N},Y} \coloneqq [-\pi/(R\Ts),-\pi/(R\Ts))$ となる。
全体に $1/R$ が掛けられているが、振幅が $1/R$ になるわけではない。DTFT の内積計算の対象となる点の数が $1/R$ に減ったことに起因する。
$\Xd$ の台のうち $\xd$ の第1 Nyquist 領域 $S_{\text{N},X} \coloneq [-\pi/\Ts, \pi/\Ts)$ にある部分を $S_X$ とする。エイリアシングが生じない必要十分条件は $S_X\subset S_{\text{N},X}$ である。ここで言うエイリアシングとは、$S_X$ を $2\pi/(R\Ts)$ の整数倍ずつ平行移動しながら無限に複製したものを考えたとき、複製された $S_X$ 同士に重なりが生じることを指す。
導出
\[
    \begin{align*}
        \Yd(\omega) &= \sum_{n=-\infty}^\infty \yd(n)\exp(-i\omega nR\Ts) = \sum_{n=-\infty}^\infty \xd(nR)\exp(-i\omega nR\Ts) \\
        &= \sum_{m=-\infty}^\infty u(m)\xd(m)\exp(-i\omega m\Ts) \quad \text{where} \quad u(m) \coloneqq \begin{cases}
            1 & (m\in R\integers) \\
            0 & (\text{otherwise})
        \end{cases} \\
        &= \DTFTwithArg{u\xd}{\omega} \\
        &= \frac{\Ts}{2\pi}\integrate{-\pi/\Ts}{\pi/\Ts}{\Xd(\omega-\tilde{\omega})U(\tilde{\omega})}{}{\tilde{\omega}} \quad \text{where} \quad U(\omega) \coloneqq \frac{2\pi}{R\Ts}\sum_{m=-\infty}^\infty\delta\parens*{\omega – n\frac{2\pi}{R\Ts}} \\
        &= \frac{1}{R} \integrate{-\pi/\Ts}{\pi/\Ts}{\Xd(\omega-\tilde{\omega})\sum_{n=-\infty}^{\infty}\delta\parens*{\tilde{\omega}-n\frac{2\pi}{R\Ts}}}{}{\tilde{\omega}} \tag{1}
    \end{align*}
\]
※1 信号処理 Tips – 門前の小僧 (motchy869.com)「指数関数とデルタ関数の無限級数」を用いた
被積分関数の $\Xd$ とデルタ関数列を次の図に示す。$\omega$ がデルタ関数列の原点からのオフセットである。
 $\Xd$ とデルタ関数列($R=2$)
$\Xd$ とデルタ関数列($R=2$) 
$\Xd$ が $2\pi/\Ts$ 周期関数であること、式(1)の積分範囲が $[-\pi/\Ts,\pi/\Ts]$ であること、および $R$ が偶数の場合に積分範囲の両端点で生じる、デルタ関数の中心から左右半分と $\Xd$ との積の積分を考慮すると、式(1)は次式と等しいことが解る。
\[
    \begin{align*}
        \Yd(\omega) &= \frac{1}{R}\sum_{n=-\floor{R/2}}^{\floor{R/2}} \integrate{-\pi/\Ts}{\pi/\Ts}{\Xd(\omega-\tilde{\omega})\delta\parens*{\tilde{\omega}-n\frac{2\pi}{R\Ts}}}{}{\tilde{\omega}} \\
        &= \frac{1}{R}\sum_{n=0}^{R-1} \Xd\parens*{\omega-n\frac{2\pi}{R\Ts}}
    \end{align*}
\]
また同時に、$\Yd$ が $\omega$ に関する $2\pi/(R\Ts)$ 周期関数であることも解る。
エイリアシングが生じないことと $S_X \subset S_{N,\text{X}}$ が同値であることが解る。$\Yd$ を次の図に示す。
 $\Yd$
$\Yd$ 
数値例
$x(t) = A\exp(-t^2/(2\sigma^2))$ とし、特に $A=1,\;\sigma=1/10,\;\Ts=1/80,\;R=2$ としたときの数値例を示す。$\xd$ は $[-5\sigma,5\sigma]$ からサンプリングし、ポイント数は $2\times 5\sigma/\Ts + 1 = 81$ である。
 $\xd$
$\xd$ 
これを $1/R=1/2$ にアンダー・サンプリングして $\yd$ を得る(下図)。
 $\yd$
$\yd$ 
$\xd,\yd$ それぞれの DTFT $\Xd,\Yd$ を計算する(下図)。
![2023_4_23_1352_Abs[Xd].png](https://motchy869.com/wordpress/wp-content/uploads/2023/04/2023_4_23_1352_AbsXd.png) $\abs{\Xd}$
$\abs{\Xd}$ 
![2023_4_23_1352_Abs[Yd].png](https://motchy869.com/wordpress/wp-content/uploads/2023/04/2023_4_23_1352_AbsYd.png) $\abs{\Yd}$
$\abs{\Yd}$ 
$\Yd$ の最大値が $\Xd$ の最大値の半分であり、 $\yd$ の第1 Nyquist 領域が $\xd$ の半分に狭まっていることを確認できる。