half-band filter

はじめに

レート変換処理の一部で使われる half-band filter について調べて考えたことを書き残しておく。

\[ % 汎用 \newcommand{\ctext}[1]{\raise0.2ex\hbox{\textcircled{\scriptsize{#1}}}} % 数学 % 汎用 \DeclarePairedDelimiterX{\parens}[1]{\lparen}{\rparen}{#1} \DeclarePairedDelimiterX{\braces}[1]{\lbrace}{\rbrace}{#1} \DeclarePairedDelimiterX{\bracks}[1]{\lbrack}{\rbrack}{#1} \DeclarePairedDelimiterX{\verts}[1]{|}{|}{#1} \DeclarePairedDelimiterX{\Verts}[1]{\|}{\|}{#1} \newcommand{\as}{{\quad\textrm{as}\quad}} \newcommand{\st}{{\textrm{ s.t. }}} \DeclarePairedDelimiterX{\setComprehension}[2]{\lbrace}{\rbrace}{#1\,\delimsize\vert\,#2} \newcommand{\naturalNumbers}{\mathbb{N}} \newcommand{\integers}{\mathbb{Z}} \newcommand{\rationalNumbers}{\mathbb{Q}} \newcommand{\realNumbers}{\mathbb{R}} \newcommand{\complexNumbers}{\mathbb{C}} \newcommand{\field}{\mathbb{F}} \newcommand{\func}[2]{{#1}\parens*{#2}} \newcommand{\argmax}{\mathop{\textrm{arg~max}}} \newcommand{\argmin}{\mathop{\textrm{arg~min}}} % 集合論 \newcommand{\range}[2]{\braces*{#1,\dotsc,#2}} \providecommand{\complement}{}\renewcommand{\complement}{\mathrm{c}} \newcommand{\ind}[2]{\mathbbm{1}_{#1}\parens*{#2}} \newcommand{\indII}[1]{\mathbbm{1}\braces*{#1}} % 数論 \newcommand{\abs}[1]{\verts*{#1}} \newcommand{\combi}[2]{{_{#1}\mathrm{C}_{#2}}} \newcommand{\perm}[2]{{_{#1}\mathrm{P}_{#2}}} \newcommand{\GaloisField}[1]{\mathrm{GF}\parens*{#1}} % 解析学 \newcommand{\NapierE}{\mathrm{e}} \newcommand{\sgn}[1]{\operatorname{sgn}\parens*{#1}} \newcommand{\cl}[1]{\operatorname{cl}#1} \newcommand{\Img}[1]{\operatorname{Img}\parens*{#1}} \newcommand{\dom}[1]{\operatorname{dom}\parens*{#1}} \newcommand{\norm}[1]{\Verts*{#1}} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\expo}[1]{\exp\parens*{#1}} \newcommand{\sinc}{\mathop{\textrm{sinc}}} \newcommand{\GammaFunc}[1]{\Gamma\parens*{#1}} \newcommand{\erf}{\mathop{\mathrm{erf}}} % 逆三角関数 \newcommand{\asin}[1]{\operatorname{Sin}^{-1}{#1}} \newcommand{\acos}[1]{\operatorname{Cos}^{-1}{#1}} \newcommand{\atan}[1]{\operatorname{{Tan}^{-1}}{#1}} \newcommand{\atanEx}[2]{\atan{\parens*{#1,#2}}} % 畳み込み \newcommand{\cycConv}[2]{{#1}\underset{\text{cyc}}{*}{#2}} % 微分 \newcommand{\deriv}[3]{\frac{\operatorname{d}^{#3}#1}{\operatorname{d}{#2}^{#3}}} \newcommand{\derivLong}[3]{\frac{\operatorname{d}^{#3}}{\operatorname{d}{#2}^{#3}}#1} \newcommand{\partDeriv}[3]{\frac{\operatorname{\partial}^{#3}#1}{\operatorname{\partial}{#2}^{#3}}} \newcommand{\partDerivLong}[3]{\frac{\operatorname{\partial}^{#3}}{\operatorname{\partial}{#2}^{#3}}#1} \newcommand{\partDerivIIHetero}[3]{\frac{\operatorname{\partial}^2#1}{\partial#2\operatorname{\partial}#3}} \newcommand{\partDerivIIHeteroLong}[3]{{\frac{\operatorname{\partial}^2}{\partial#2\operatorname{\partial}#3}#1}} % 積分 \newcommand{\integrate}[5]{\int_{#1}^{#2}{#3}{\mathrm{d}^{#4}}#5} \newcommand{\LebInteg}[4]{\int_{#1} {#2} {#3}\parens*{\mathrm{d}#4}} % 複素解析 \newcommand{\conj}[1]{\overline{#1}} \providecommand{\Re}{}\renewcommand{\Re}[1]{{\operatorname{Re}{\parens*{#1}}}} \providecommand{\Im}{}\renewcommand{\Im}[1]{{\operatorname{Im}{\parens*{#1}}}} \newcommand{\Arg}[1]{\operatorname{Arg}{\parens*{#1}}} \newcommand{\Log}[1]{\operatorname{Log}{#1}} % ラプラス変換 \newcommand{\LPLC}[1]{\operatorname{\mathcal{L}}\parens*{#1}} \newcommand{\ILPLC}[1]{\operatorname{\mathcal{L}}^{-1}\parens*{#1}} % 離散Fourier変換 \newcommand{\DFT}[1]{\mathrm{DFT}\parens*{#1}} % Z変換 \newcommand{\ZTrans}[1]{\operatorname{\mathcal{Z}}\parens*{#1}} \newcommand{\IZTrans}[1]{\operatorname{\mathcal{Z}}^{-1}\parens*{#1}} % 線形代数 \newcommand{\bm}[1]{{\boldsymbol{#1}}} \newcommand{\matEntry}[3]{#1\bracks*{#2}\bracks*{#3}} \newcommand{\matPart}[5]{\matEntry{#1}{#2:#3}{#4:#5}} \newcommand{\diag}[1]{\operatorname{diag}\parens*{#1}} \newcommand{\tr}[1]{\operatorname{tr}{\parens*{#1}}} \newcommand{\inprod}[2]{\left\langle#1,#2\right\rangle} \newcommand{\HadamardProd}{\odot} \newcommand{\HadamardDiv}{\oslash} \newcommand{\Span}[1]{\operatorname{span}\bracks*{#1}} \newcommand{\Ker}[1]{\operatorname{Ker}\parens*{#1}} \newcommand{\rank}[1]{\operatorname{rank}\parens*{#1}} % ベクトル % 単位ベクトル \newcommand{\vix}{\bm{i}_x} \newcommand{\viy}{\bm{i}_y} \newcommand{\viz}{\bm{i}_z} % 確率論 \newcommand{\PDF}[2]{\operatorname{PDF}\bracks*{#1,\;#2}} \newcommand{\Ber}[1]{\operatorname{Ber}\parens*{#1}} \newcommand{\Beta}[2]{\operatorname{Beta}\parens*{#1,#2}} \newcommand{\ExpDist}[1]{\operatorname{ExpDist}\parens*{#1}} \newcommand{\ErlangDist}[2]{\operatorname{ErlangDist}\parens*{#1,#2}} \newcommand{\PoissonDist}[1]{\operatorname{PoissonDist}\parens*{#1}} \newcommand{\GammaDist}[2]{\operatorname{Gamma}\parens*{#1,#2}} \newcommand{\cind}[2]{\ind{#1\left| #2\right.}} %条件付き指示関数 \providecommand{\Pr}{}\renewcommand{\Pr}[1]{\operatorname{Pr}\parens*{#1}} \newcommand{\cPr}[2]{\operatorname{Pr}\cPrParens{#1}{#2}} \newcommand{\E}[2]{\operatorname{E}_{#1}\bracks*{#2}} \newcommand{\cE}[3]{\E{#1}{\left.#2\right|#3}} \newcommand{\Var}[2]{\operatorname{Var}_{#1}\bracks*{#2}} \newcommand{\Cov}[2]{\operatorname{Cov}\bracks*{#1,#2}} \newcommand{\CovMat}[1]{\operatorname{Cov}\bracks*{#1}} % グラフ理論 \newcommand{\neighborhood}{\mathcal{N}} % プログラミング \newcommand{\plpl}{\mathrel{++}} \newcommand{\pleq}{\mathrel{+}=} \newcommand{\asteq}{\mathrel{*}=} \]

参考資料

定義

$\def\Ts{{T_\text{s}}}$

サンプリング周期を $\Ts$ とする。係数列 $\{h(n)\}$ のz変換 $H_z(z)$ が次の性質を満たすフィルタを half-band filter と呼ぶ。

  • 1.1 $H_z(z^{-1})=H_z(z)$
  • 1.2 $H_z(z)+H_z(-z^{-1})=1$

係数列のDTFTを $H_\text{DTFT}(\omega)$ とすると、上記の性質は次と同値である。

  • 2.1 $H_\text{DTFT}(-\omega\Ts)=H_\text{DTFT}(\omega\Ts)$
  • 2.2 $H_\text{DTFT}(\omega\Ts)+H_\text{DTFT}(\pi-\omega\Ts)=1$

性質

  1. $h$は偶関数である
  2. $H_\text{DTFT}(\pi/(2\Ts))=1/2$
  3. $h(0)=1/2$
  4. $h(n)=0\quad(n:\text{even},\;n\neq 0)$

性質1の導出

$Proof$

\[ \begin{align*} h(-n) &= \frac{\Ts}{2\pi}\integrate{-\pi/\Ts}{\pi/\Ts}{H_\text{DTFT}(\omega\Ts)\exp\parens{-i\omega\Ts n}}{}{\omega} = \frac{\Ts}{2\pi}\integrate{-\pi/\Ts}{\pi/\Ts}{H_\text{DTFT}(-\omega\Ts)\exp\parens{i(-\omega)\Ts n}}{}{\omega} \\ &= -\frac{\Ts}{2\pi}\integrate{\pi/\Ts}{-\pi/\Ts}{H_\text{DTFT}(\omega’\Ts)\exp\parens{i\omega’\Ts n}}{}{\omega’} \quad (\text{変数変換:}\omega = -\omega’) \\ &= \frac{\Ts}{2\pi}\integrate{-\pi/\Ts}{\pi/\Ts}{H_\text{DTFT}(\omega’\Ts)\exp\parens{i\omega’\Ts n}}{}{\omega’} = h(n) \end{align*} \]

$\square$

性質2の導出

定義の2.2で $\omega=\pi/(2\Ts)$ とすれば直ちに得られる。

性質3,4の導出

定義の2.1の両辺を逆z変換する。まず次式が成り立つ。

\[ \begin{align*} \IZTrans{H_z(-z^{-1})}(n) &= \IZTrans{H_z((-z)^{-1})}(n) \\ &= \IZTrans{H_z(-z)}(n) \quad (\because\;h\text{が偶関数}) \\ &= (-1)^n h(n) \end{align*} \]

これを用いて、定義の2.1の両辺の逆z変換は次式である。

\[ h(n) + (-1)^n h(n) = \delta(n) \]

上式より性質3,4が従う。

$\square$

投稿者: motchy

An embedded software and FPGA engineer for measuring instrument.

コメントを残す