\[
    % general purpose
    \newcommand{\ctext}[1]{\raise0.2ex\hbox{\textcircled{\scriptsize{#1}}}}
    % mathematics
      % general purpose
      \DeclarePairedDelimiterX{\parens}[1]{\lparen}{\rparen}{#1}
      \DeclarePairedDelimiterX{\braces}[1]{\lbrace}{\rbrace}{#1}
      \DeclarePairedDelimiterX{\bracks}[1]{\lbrack}{\rbrack}{#1}
      \DeclarePairedDelimiterX{\verts}[1]{|}{|}{#1}
      \DeclarePairedDelimiterX{\Verts}[1]{\|}{\|}{#1}
      \newcommand{\as}{{\quad\textrm{as}\quad}}
      \newcommand{\st}{{\textrm{ s.t. }}}
      \DeclarePairedDelimiterX{\setComprehension}[2]{\lbrace}{\rbrace}{#1\,\delimsize\vert\,#2}
      \newcommand{\naturalNumbers}{\mathbb{N}}
      \newcommand{\integers}{\mathbb{Z}}
      \newcommand{\rationalNumbers}{\mathbb{Q}}
      \newcommand{\realNumbers}{\mathbb{R}}
      \newcommand{\complexNumbers}{\mathbb{C}}
      \newcommand{\field}{\mathbb{F}}
      \newcommand{\func}[2]{{#1}\parens*{#2}}
      \newcommand*{\argmax}{\operatorname*{arg~max}}
      \newcommand*{\argmin}{\operatorname*{arg~min}}
      % set theory
      \newcommand{\range}[2]{\braces*{#1,\dotsc,#2}}
      \providecommand{\complement}{}\renewcommand{\complement}{\mathrm{c}}
      \newcommand{\ind}[2]{\mathbbm{1}_{#1}\parens*{#2}}
      \newcommand{\indII}[1]{\mathbbm{1}\braces*{#1}}
      % number theory
      \newcommand{\abs}[1]{\verts*{#1}}
      \newcommand{\combi}[2]{{_{#1}\mathrm{C}_{#2}}}
      \newcommand{\perm}[2]{{_{#1}\mathrm{P}_{#2}}}
      \newcommand{\GaloisField}[1]{\mathrm{GF}\parens*{#1}}
      % real analysis
      \newcommand{\NapierE}{\mathrm{e}}
      \newcommand{\sgn}[1]{\operatorname{sgn}\parens*{#1}}
      \newcommand*{\rect}{\operatorname{rect}}
      \newcommand{\cl}[1]{\operatorname{cl}#1}
      \newcommand{\Img}[1]{\operatorname{Img}\parens*{#1}}
      \newcommand{\dom}[1]{\operatorname{dom}\parens*{#1}}
      \newcommand{\norm}[1]{\Verts*{#1}}
      \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor}
      \newcommand{\ceil}[1]{\left\lceil#1\right\rceil}
      \newcommand{\expo}[1]{\exp\parens*{#1}}
      \newcommand{\sinc}{\operatorname{sinc}}
      \newcommand{\nsinc}{\operatorname{nsinc}}
      \newcommand{\GammaFunc}[1]{\Gamma\parens*{#1}}
      \newcommand*{\erf}{\operatorname{erf}}
          % inverse trigonometric functions
          \newcommand{\asin}[1]{\operatorname{Sin}^{-1}{#1}}
          \newcommand{\acos}[1]{\operatorname{Cos}^{-1}{#1}}
          \newcommand{\atan}[1]{\operatorname{{Tan}^{-1}}{#1}}
          \newcommand{\atanEx}[2]{\atan{\parens*{#1,#2}}}
          % convolution
          \newcommand{\cycConv}[2]{{#1}\underset{\text{cyc}}{*}{#2}}
          % derivative
          \newcommand{\deriv}[3]{\frac{\operatorname{d}^{#3}#1}{\operatorname{d}{#2}^{#3}}}
          \newcommand{\derivLong}[3]{\frac{\operatorname{d}^{#3}}{\operatorname{d}{#2}^{#3}}#1}
          \newcommand{\partDeriv}[3]{\frac{\operatorname{\partial}^{#3}#1}{\operatorname{\partial}{#2}^{#3}}}
          \newcommand{\partDerivLong}[3]{\frac{\operatorname{\partial}^{#3}}{\operatorname{\partial}{#2}^{#3}}#1}
          \newcommand{\partDerivIIHetero}[3]{\frac{\operatorname{\partial}^2#1}{\partial#2\operatorname{\partial}#3}}
          \newcommand{\partDerivIIHeteroLong}[3]{{\frac{\operatorname{\partial}^2}{\partial#2\operatorname{\partial}#3}#1}}
          % integral
          \newcommand{\integrate}[5]{\int_{#1}^{#2}{#3}{\mathrm{d}^{#4}}#5}
          \newcommand{\LebInteg}[4]{\int_{#1} {#2} {#3}\parens*{\mathrm{d}#4}}
      % complex analysis
      \newcommand{\conj}[1]{\overline{#1}}
      \providecommand{\Re}{}\renewcommand{\Re}[1]{{\operatorname{Re}{\parens*{#1}}}}
      \providecommand{\Im}{}\renewcommand{\Im}[1]{{\operatorname{Im}{\parens*{#1}}}}
      \newcommand{\Arg}{\operatorname{Arg}}
      \newcommand{\Log}{\operatorname{Log}}
          % Laplace transform
          \newcommand{\LPLC}[1]{\operatorname{\mathcal{L}}\parens*{#1}}
          \newcommand{\ILPLC}[1]{\operatorname{\mathcal{L}}^{-1}\parens*{#1}}
          % Discrete Fourier Transform
          \newcommand{\DFT}[1]{\mathrm{DFT}\parens*{#1}}
          % Z transform
          \newcommand{\ZTrans}[1]{\operatorname{\mathcal{Z}}\parens*{#1}}
          \newcommand{\IZTrans}[1]{\operatorname{\mathcal{Z}}^{-1}\parens*{#1}}
      % linear algebra
      \newcommand{\bm}[1]{{\boldsymbol{#1}}}
      \newcommand{\matEntry}[3]{#1\bracks*{#2}\bracks*{#3}}
      \newcommand{\matPart}[5]{\matEntry{#1}{#2:#3}{#4:#5}}
      \newcommand{\diag}[1]{\operatorname{diag}\parens*{#1}}
      \newcommand{\tr}[1]{\operatorname{tr}{\parens*{#1}}}
      \newcommand{\inprod}[2]{\left\langle#1,#2\right\rangle}
      \newcommand{\HadamardProd}{\odot}
      \newcommand{\HadamardDiv}{\oslash}
      \newcommand{\Span}[1]{\operatorname{span}\bracks*{#1}}
      \newcommand{\Ker}[1]{\operatorname{Ker}\parens*{#1}}
      \newcommand{\rank}[1]{\operatorname{rank}\parens*{#1}}
        % vector
        % unit vector
        \newcommand{\vix}{\bm{i}_x}
        \newcommand{\viy}{\bm{i}_y}
        \newcommand{\viz}{\bm{i}_z}
      % graph theory
      \newcommand{\neighborhood}{\mathcal{N}}
    % probability theory
    \newcommand{\PDF}[2]{\operatorname{PDF}\bracks*{#1,\;#2}}
    \newcommand{\Ber}[1]{\operatorname{Ber}\parens*{#1}}
    \newcommand{\Beta}[2]{\operatorname{Beta}\parens*{#1,#2}}
    \newcommand{\ExpDist}[1]{\operatorname{ExpDist}\parens*{#1}}
    \newcommand{\ErlangDist}[2]{\operatorname{ErlangDist}\parens*{#1,#2}}
    \newcommand{\PoissonDist}[1]{\operatorname{PoissonDist}\parens*{#1}}
    \newcommand{\GammaDist}[2]{\operatorname{Gamma}\parens*{#1,#2}}
    \newcommand{\cind}[2]{\ind{#1\left| #2\right.}}	% conditional indicator function
    \providecommand{\Pr}{}\renewcommand{\Pr}[1]{\operatorname{Pr}\parens*{#1}}
    \DeclarePairedDelimiterX{\cPrParens}[2]{(}{)}{#1\,\delimsize\vert\,#2}
    \newcommand{\cPr}[2]{\operatorname{Pr}\cPrParens{#1}{#2}}
    \newcommand{\E}[2]{\operatorname{E}_{#1}\bracks*{#2}}
    \newcommand{\cE}[3]{\E{#1}{\left.#2\right|#3}}
    \newcommand{\Var}[2]{\operatorname{Var}_{#1}\bracks*{#2}}
    \newcommand{\Cov}[2]{\operatorname{Cov}\bracks*{#1,#2}}
    \newcommand{\CovMat}[1]{\operatorname{Cov}\bracks*{#1}}
    % signal processing
      % Discrete Time Fourier Transform
      \newcommand{\DTFT}[1]{\mathrm{DTFT}\parens*{#1}}
      \newcommand{\IDTFT}[1]{\mathrm{IDTFT}\parens*{#1}}
    % computer science
      % programming
      \newcommand{\plpl}{\mathrel{++}}
      \newcommand{\pleq}{\mathrel{+}=}
      \newcommand{\asteq}{\mathrel{*}=}
    \]
はじめに
他の記事で参照するための補題をここに書いておく。
ベクトルのスカラー関数倍の回転
主張
$\bm{r}\in\realNumbers$とする。$f: \realNumbers^3\to\complexNumbers,\;A(\bm{r}): \realNumbers^3\to\realNumbers^3$はともに$\mathrm{C}^1$級とする。このとき次式が成り立つ。
\[ \nabla_\bm{r}\times f(\bm{r})\bm{A}(\bm{r}) = \bigl(\nabla_\bm{r}f(\bm{r})\bigr)\times \bm{A}(\bm{r}) + f(\bm{r})\nabla_\bm{r}\times\bm{A}(\bm{r}) \]導出
$i+j$を3で割った余りを$[i+j]$と表すことにする。
\begin{align*} \phantom{=} &\nabla_\bm{r}\times f(\bm{r})\bm{A}(\bm{r}) = \sum_{i=1}^3 \bm{i}_i\left(\partDeriv{f(\bm{r})A_{[i+2]}(\bm{r})}{r_{[i+1]}}{} – \partDeriv{f(\bm{r})A_{[i+1]}(\bm{r})}{r_{[i+2]}}{}\right) \\ = &\sum_{i=1}^3 \bm{i}_i \left[\left(\partDeriv{f(\bm{r})}{r_{[i+1]}}{}A_{[i+2]}(\bm{r}) – \partDeriv{f(\bm{r})}{r_{[i+2]}}{}A_{[i+3]}(\bm{r})\right) + f(\bm{r})\left(\partDeriv{A_{[i+2]}(\bm{r})}{r_{[i+1]}}{} – \partDeriv{A_{[i+1]}(\bm{r})}{r_{[i+2]}}{}\right)\right] \\ = &\bigl(\nabla_\bm{r}f(\bm{r})\bigr)\times \bm{A}(\bm{r}) + f(\bm{r})\nabla_\bm{r}\times\bm{A}(\bm{r}) \end{align*}$\square$
定数ベクトルとの外積の回転
主張
$\bm{r},\bm{C}\in\realNumbers$とする。$A: \realNumbers^3\to\realNumbers^3$は$\mathrm{C}^1$級とする。このとき次式が成り立つ。\[ \nabla_\bm{r}\times\bigl(\bm{C}\times\bm{A}(\bm{r})\bigr) = (\nabla\cdot\bm{A}(\bm{r}))\bm{C} – J_\bm{A}\bm{C} \]ここに$J_\bm{A}$は$A$のJacobi行列である。
導出
\begin{align*} &\phantom{=} \nabla_\bm{r}\times\bigl(\bm{C}\times\bm{A}(\bm{r})\bigr) \\ &= \bm{i}_1\left[C_1\partDerivLong{A_2}{r_2}{} – C_2\partDerivLong{A_1}{r_2}{} – C_3\partDerivLong{A_1}{r_3}{} + C_1\partDerivLong{A_3}{r_3}{}\right] \\ &\phantom{=} + \bm{i}_2\left[C_2\partDerivLong{A_3}{r_3}{} – C_3\partDerivLong{A_2}{r_3}{} – C_1\partDerivLong{A_2}{r_1}{} + C_2\partDerivLong{A_1}{r_1}{}\right] \\ &\phantom{=} + \bm{i}_3\left[C_3\partDerivLong{A_1}{r_1}{} – C_1\partDerivLong{A_3}{r_1}{} – C_2\partDerivLong{A_3}{r_2}{} + C_3\partDerivLong{A_2}{r_2}{}\right] \end{align*}$\bm{i}_1$の係数を変形して次式を得る。
\[ C_1\left(\partDerivLong{A_1}{r_1}{} + \partDerivLong{A_2}{r_2}{} + \partDerivLong{A_3}{r_3}{}\right) – C_1\partDerivLong{A_1}{r_1}{} – C_2\partDerivLong{A_1}{r_2}{} – C_3\partDerivLong{A_1}{r_3}{} = C_1\nabla\cdot\bm{A} – \bm{C}\cdot\nabla A_1 \]$\bm{i}_2, \bm{i}_3$についても同様にして、結局次式を得る。
\[ \nabla_\bm{r}\times\bigl(\bm{C}\times\bm{A}(\bm{r})\bigr) = (\nabla\cdot\bm{A})\bm{C} – (\bm{C}\cdot\nabla A_1)\bm{i}_1 – (\bm{C}\cdot\nabla A_2)\bm{i}_2 – (\bm{C}\cdot\nabla A_3)\bm{i}_3 = (\nabla\cdot\bm{A}(\bm{r}))\bm{C} – J_\bm{A}\bm{C} \]$\square$
ベクトルLaplacianの発散
主張
$\bm{r}\in\realNumbers$とする。$A: \realNumbers^3\to\realNumbers^3$は$\mathrm{C}^3$級とする。次式が成り立つ。
\[ \nabla\cdot(\nabla^2\bm{A}) = \Delta(\nabla\cdot\bm{A}) \]導出
\begin{align*} \nabla\cdot\nabla^2\bm{A} &= \nabla\cdot\left(\bm{i}_1 \Delta A_1 + \bm{i}_2 \Delta A_2 + \bm{i}_3 \Delta A_3\right) = \partDerivLong{\Delta A_1}{r_1}{} + \partDerivLong{\Delta A_2}{r_2}{} + \partDerivLong{\Delta A_3}{r_3}{} \\ &= \Delta\left(\partDerivLong{A_1}{r_1}{} + \partDerivLong{A_2}{r_2}{} + \partDerivLong{A_3}{r_3}{}\right) = \Delta(\nabla\cdot\bm{A}) \end{align*}$\square$
