窓関数の周波数帯域幅と時間長の関係

はじめに

窓関数の時間長と周波数帯域幅の間には反比例の関係がある。周波数領域に於ける重みが狭い範囲に集中する(つまり分解能が高い)につれて時間領域に於ける長さは大きくなる。本記事は Brick-wall, Gaussian, Hann のタイプの窓関数について時間長と周波数帯域幅が反比例の関係にあることを示し、所与の周波数範囲に重みの 95 % 以上が集中するために必要な時間長を数値的に示す。

本論

\[ % general purpose \newcommand{\ctext}[1]{\raise0.2ex\hbox{\textcircled{\scriptsize{#1}}}} % mathematics % general purpose \DeclarePairedDelimiterX{\parens}[1]{\lparen}{\rparen}{#1} \DeclarePairedDelimiterX{\braces}[1]{\lbrace}{\rbrace}{#1} \DeclarePairedDelimiterX{\bracks}[1]{\lbrack}{\rbrack}{#1} \DeclarePairedDelimiterX{\verts}[1]{|}{|}{#1} \DeclarePairedDelimiterX{\Verts}[1]{\|}{\|}{#1} \newcommand{\as}{{\quad\textrm{as}\quad}} \newcommand{\st}{{\textrm{ s.t. }}} \DeclarePairedDelimiterX{\setComprehension}[2]{\lbrace}{\rbrace}{#1\,\delimsize\vert\,#2} \newcommand{\naturalNumbers}{\mathbb{N}} \newcommand{\integers}{\mathbb{Z}} \newcommand{\rationalNumbers}{\mathbb{Q}} \newcommand{\realNumbers}{\mathbb{R}} \newcommand{\complexNumbers}{\mathbb{C}} \newcommand{\field}{\mathbb{F}} \newcommand{\func}[2]{{#1}\parens*{#2}} \newcommand*{\argmax}{\operatorname*{arg~max}} \newcommand*{\argmin}{\operatorname*{arg~min}} % set theory \newcommand{\range}[2]{\braces*{#1,\dotsc,#2}} \providecommand{\complement}{}\renewcommand{\complement}{\mathrm{c}} \newcommand{\ind}[2]{\mathbbm{1}_{#1}\parens*{#2}} \newcommand{\indII}[1]{\mathbbm{1}\braces*{#1}} % number theory \newcommand{\abs}[1]{\verts*{#1}} \newcommand{\combi}[2]{{_{#1}\mathrm{C}_{#2}}} \newcommand{\perm}[2]{{_{#1}\mathrm{P}_{#2}}} \newcommand{\GaloisField}[1]{\mathrm{GF}\parens*{#1}} % analysis \newcommand{\NapierE}{\mathrm{e}} \newcommand{\sgn}[1]{\operatorname{sgn}\parens*{#1}} \newcommand*{\rect}{\operatorname{rect}} \newcommand{\cl}[1]{\operatorname{cl}#1} \newcommand{\Img}[1]{\operatorname{Img}\parens*{#1}} \newcommand{\dom}[1]{\operatorname{dom}\parens*{#1}} \newcommand{\norm}[1]{\Verts*{#1}} \newcommand{\floor}[1]{\left\lfloor#1\right\rfloor} \newcommand{\ceil}[1]{\left\lceil#1\right\rceil} \newcommand{\expo}[1]{\exp\parens*{#1}} \newcommand*{\sinc}{\operatorname{sinc}} \newcommand*{\nsinc}{\operatorname{nsinc}} \newcommand{\GammaFunc}[1]{\Gamma\parens*{#1}} \newcommand*{\erf}{\operatorname{erf}} % inverse trigonometric functions \newcommand{\asin}[1]{\operatorname{Sin}^{-1}{#1}} \newcommand{\acos}[1]{\operatorname{Cos}^{-1}{#1}} \newcommand{\atan}[1]{\operatorname{{Tan}^{-1}}{#1}} \newcommand{\atanEx}[2]{\atan{\parens*{#1,#2}}} % convolution \newcommand{\cycConv}[2]{{#1}\underset{\text{cyc}}{*}{#2}} % derivative \newcommand{\deriv}[3]{\frac{\operatorname{d}^{#3}#1}{\operatorname{d}{#2}^{#3}}} \newcommand{\derivLong}[3]{\frac{\operatorname{d}^{#3}}{\operatorname{d}{#2}^{#3}}#1} \newcommand{\partDeriv}[3]{\frac{\operatorname{\partial}^{#3}#1}{\operatorname{\partial}{#2}^{#3}}} \newcommand{\partDerivLong}[3]{\frac{\operatorname{\partial}^{#3}}{\operatorname{\partial}{#2}^{#3}}#1} \newcommand{\partDerivIIHetero}[3]{\frac{\operatorname{\partial}^2#1}{\partial#2\operatorname{\partial}#3}} \newcommand{\partDerivIIHeteroLong}[3]{{\frac{\operatorname{\partial}^2}{\partial#2\operatorname{\partial}#3}#1}} % integral \newcommand{\integrate}[5]{\int_{#1}^{#2}{#3}{\mathrm{d}^{#4}}#5} \newcommand{\LebInteg}[4]{\int_{#1} {#2} {#3}\parens*{\mathrm{d}#4}} % complex analysis \newcommand{\conj}[1]{\overline{#1}} \providecommand{\Re}{}\renewcommand{\Re}[1]{{\operatorname{Re}{\parens*{#1}}}} \providecommand{\Im}{}\renewcommand{\Im}[1]{{\operatorname{Im}{\parens*{#1}}}} \newcommand*{\Arg}{\operatorname{Arg}} \newcommand*{\Log}{\operatorname{Log}} % Laplace transform \newcommand{\LPLC}[1]{\operatorname{\mathcal{L}}\parens*{#1}} \newcommand{\ILPLC}[1]{\operatorname{\mathcal{L}}^{-1}\parens*{#1}} % Discrete Fourier Transform \newcommand{\DFT}[1]{\mathrm{DFT}\parens*{#1}} % Z transform \newcommand{\ZTrans}[1]{\operatorname{\mathcal{Z}}\parens*{#1}} \newcommand{\IZTrans}[1]{\operatorname{\mathcal{Z}}^{-1}\parens*{#1}} % linear algebra \newcommand{\bm}[1]{{\boldsymbol{#1}}} \newcommand{\matEntry}[3]{#1\bracks*{#2}\bracks*{#3}} \newcommand{\matPart}[5]{\matEntry{#1}{#2:#3}{#4:#5}} \newcommand{\diag}[1]{\operatorname{diag}\parens*{#1}} \newcommand{\tr}[1]{\operatorname{tr}{\parens*{#1}}} \newcommand{\inprod}[2]{\left\langle#1,#2\right\rangle} \newcommand{\HadamardProd}{\odot} \newcommand{\HadamardDiv}{\oslash} \newcommand{\Span}[1]{\operatorname{span}\bracks*{#1}} \newcommand{\Ker}[1]{\operatorname{Ker}\parens*{#1}} \newcommand{\rank}[1]{\operatorname{rank}\parens*{#1}} % vector % unit vector \newcommand{\vix}{\bm{i}_x} \newcommand{\viy}{\bm{i}_y} \newcommand{\viz}{\bm{i}_z} % probability theory \newcommand{\PDF}[2]{\operatorname{PDF}\bracks*{#1,\;#2}} \newcommand{\Ber}[1]{\operatorname{Ber}\parens*{#1}} \newcommand{\Beta}[2]{\operatorname{Beta}\parens*{#1,#2}} \newcommand{\ExpDist}[1]{\operatorname{ExpDist}\parens*{#1}} \newcommand{\ErlangDist}[2]{\operatorname{ErlangDist}\parens*{#1,#2}} \newcommand{\PoissonDist}[1]{\operatorname{PoissonDist}\parens*{#1}} \newcommand{\GammaDist}[2]{\operatorname{Gamma}\parens*{#1,#2}} \newcommand{\cind}[2]{\ind{#1\left| #2\right.}} % conditional indicator function \providecommand{\Pr}{}\renewcommand{\Pr}[1]{\operatorname{Pr}\parens*{#1}} \DeclarePairedDelimiterX{\cPrParens}[2]{(}{)}{#1\,\delimsize\vert\,#2} \newcommand{\cPr}[2]{\operatorname{Pr}\cPrParens{#1}{#2}} \newcommand{\E}[2]{\operatorname{E}_{#1}\bracks*{#2}} \newcommand{\cE}[3]{\E{#1}{\left.#2\right|#3}} \newcommand{\Var}[2]{\operatorname{Var}_{#1}\bracks*{#2}} \newcommand{\Cov}[2]{\operatorname{Cov}\bracks*{#1,#2}} \newcommand{\CovMat}[1]{\operatorname{Cov}\bracks*{#1}} % graph theory \newcommand{\neighborhood}{\mathcal{N}} % programming \newcommand{\plpl}{\mathrel{++}} \newcommand{\pleq}{\mathrel{+}=} \newcommand{\asteq}{\mathrel{*}=} \]

実用的には窓関数はディジタル信号処理で実装されるから、Fourier 変換は連続時間ではなく離散時間(つまり DFT)で行われるべきである。しかし本記事では次の理由で連続時間で検討する。

  1. 連続時間でも離散時間でも本質的な関係は変わらない
  2. 計算過程でできるだけ解析解を維持したい
  3. 信号のサンプル数が十分大きければ連続時間と離散時間で結果に大差はない

計算過程は本記事の最後に示す計算過程 (Mathematica notebook) に記されている。次の表は計算結果の要約である。

窓関数[$-B_f/2,B_f/2$]に重みの 95 % 以上を集中せしむる時間長備考
Brick-wall window$3.98/B_f$
Gaussian window$3.82/B_f$時間長は $\pm 3\sigma$ の区間の長さ。実装上は有限とする必要があるため。
Hann window$2.86/B_f$
計算結果の要約

僅か 3 例であるが、所与の周波数範囲に重みの 95 % 以上を集中させるために必要な時間長は、周波数帯域幅の逆数の 3,4 倍程度である。他の窓関数についても調べれば、おそらく 3 ~ 4 倍程度と見積もれば十分という結論が得られると思われる。

計算過程

投稿者: motchy

An embedded software and FPGA engineer for measuring instrument.

コメントを残す