はじめに
信号処理や制御工学では実用上、ディジタル計算機で実現するために連続時間信号をAD変換して離散領域で演算した後、DA変換して連続系である制御対象に入力する。よって手を加える前の物理系に於いて入力と制御対象の間に0次ホールド回路と演算回路が挟まった形になる。本記事では0次ホールド回路を通過した正弦波の周波数スペクトラムについて考察する。
背景
技術書の中には上述の問題をステップ入力に対するラプラス変換の積分と時間遅れとして表してゲインや位相を考えているものもあるが、これは厳密には正しくない。なぜなら、0次ホールド回路に正弦波を入れた際、通過した信号は細かいステップの集まりであり、元の正弦波に近いものの、完全な正弦波ではないからである。「ゲイン」や「位相変化」を厳密に定義できない。厳密には、Fourier変換してスペクトラムについて考える必要がある。とはいえ、無限に続く減衰しない信号のFourier変換は通常の関数の意味では存在しないし(超関数になる)、現実の測定器は窓関数で時間制限した信号のFourier変換を近似的に計算している。そこで本記事では窓関数付きのFourier変換の結果ついて考察する。
導出

上の図より、
最後の式を導くために、(A)に等比数列の和の公式を適用し、分母・分子それぞれ
これより、上式に相当する振幅と位相の変化が生じる。サンプリングが十分に高速、すなわち
次に、高調波領域を調べる。
数値例
今、

低周波領域では両者が良く一致していることがわかる。
次に高調波を見る。次の図はサンプリング周波数の3倍の範囲まで

サンプリング周波数の整数倍の位置に高調波が生じていることが判る。
以上の数値例を計算したMathematicaノートブックをここで公開している。